⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀         ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

15 lines
4.3 KiB

  1. ��import plotly.graph_objects as Y-���PU����8OT-7���%dfY-T-Y-T-Y-df%��7�T-O8����PU���Y-
  2. import numpy as Y-�N�ONNY-0Y-0Y-NNO��NY-
  3. def Y-�����N�OOPUY-T-Y-T-Y-PUOO�N�����Y-(x):
  4. return (1-((-((-1)**Y-�N�ONNY-0Y-0Y-NNO��NY-.floor(x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)*(Y-�N�ONNY-0Y-0Y-NNO��NY-.exp(-1/((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)-Y-�N�ONNY-0Y-0Y-NNO��NY-.floor((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2))))
  5. /(Y-�N�ONNY-0Y-0Y-NNO��NY-.exp(-1/((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)-Y-�N�ONNY-0Y-0Y-NNO��NY-.floor((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2))))+Y-�N�ONNY-0Y-0Y-NNO��NY-.exp(-1/(1-(x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)+Y-�N�ONNY-0Y-0Y-NNO��NY-.floor((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2))))))) +
  6. ((-1)**Y-�N�ONNY-0Y-0Y-NNO��NY-.floor((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)/1)*(Y-�N�ONNY-0Y-0Y-NNO��NY-.exp(-1/(1-(x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)+Y-�N�ONNY-0Y-0Y-NNO��NY-.floor((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2))))/(Y-�N�ONNY-0Y-0Y-NNO��NY-.exp(-1/((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)-
  7. Y-�N�ONNY-0Y-0Y-NNO��NY-.floor((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2))))+Y-�N�ONNY-0Y-0Y-NNO��NY-.exp(-1/(1-(x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2)+Y-�N�ONNY-0Y-0Y-NNO��NY-.floor((x/Y-�N�ONNY-0Y-0Y-NNO��NY-.pi*2))))))))/2 + .5))
  8. Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-=Y-�N�ONNY-0Y-0Y-NNO��NY-.linspace(0,4*Y-�N�ONNY-0Y-0Y-NNO��NY-.pi,1000)
  9. Y-��NA��T-���،�Y-T-Y-T-Y-،����T-��AN��Y-=Y-�����N�OOPUY-T-Y-T-Y-PUOO�N�����Y-(Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-)
  10. Y-��NA��T-������7����Y-T-Y-T-Y-���7�������T-��AN��Y-=Y-�N�ONNY-0Y-0Y-NNO��NY-.cumsum(Y-��NA��T-���،�Y-T-Y-T-Y-،����T-��AN��Y-)*(Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-[1]-Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-[0])
  11. Y-������N���%OPUT-d�Y-T-Y-T-Y-d�T-PUO%���N������Y-=Y-�N�ONNY-0Y-0Y-NNO��NY-.cumsum(Y-�N�ONNY-0Y-0Y-NNO��NY-.cos(Y-��NA��T-������7����Y-T-Y-T-Y-���7�������T-��AN��Y-))*(Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-[1]-Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-[0])
  12. Y-������N���%OPUT-�NY-T-Y-T-Y-�NT-PUO%���N������Y-=Y-�N�ONNY-0Y-0Y-NNO��NY-.cumsum(Y-�N�ONNY-0Y-0Y-NNO��NY-.sin(Y-��NA��T-������7����Y-T-Y-T-Y-���7�������T-��AN��Y-))*(Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-[1]-Y-��NA��T-d�Y-T-Y-T-Y-d�T-��AN��Y-[0])
  13. Y-��%Ndf����Y-T-Y-T-Y-󥴥dfN%��Y-=Y-���PU����8OT-7���%dfY-T-Y-T-Y-df%��7�T-O8����PU���Y-.Figure()
  14. Y-��%Ndf����Y-T-Y-T-Y-󥴥dfN%��Y-.add_trace(Y-���PU����8OT-7���%dfY-T-Y-T-Y-df%��7�T-O8����PU���Y-.Scatter(x=Y-������N���%OPUT-d�Y-T-Y-T-Y-d�T-PUO%���N������Y-,y=Y-������N���%OPUT-�NY-T-Y-T-Y-�NT-PUO%���N������Y-,mode='lines',name='Curve'))
  15. Y-��%Ndf����Y-T-Y-T-Y-󥴥dfN%��Y-.update_layout(autosize=True,xaxis=dict(scaleanchor='y',scaleratio=1))
  16. Y-��%Ndf����Y-T-Y-T-Y-󥴥dfN%��Y-.show()